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I. INTRODUCTION

We praaent ● conetitutiwe ●odel for porous, brittla rocks that includes

both compaction ●nd fracture. The ❑odel is ■icrophysical in that inelee-

ticity i. dirac~iy related to the mechanics of crack growth ●nd ●leo to tha

plastic collapse of spherical pores, The model is ●uitable for -omputing

and has been implemented in a two-dimensional ●trees wave code.

In previous papers (Hargolin 1983a; I!argolin ●nd Adams 1982), w~ hava

described the concept of the microphyeical model ●nd its eseential

components. These references ●re uritten in the context of ● constitutive

model for brittle materials, ●nd so contain detaila of the generalized

Griffith theory that governs the growth of penny-shaped cracks.

These subjects ● re ●gain briefly discussed, but the present paper

focuses primerily on new aspects of the model. In particular, we dcecrite a

mechanical madel of pore collapse, the role of ●ffective ❑oduli in combining

the effects of the pores ●nd the cracks in ● consistent faahion, ●nd finally

add come remarks on the importance of ●alf-consfstant correction to the

moduli in the calculation of span.

11. HICROPHYSICAL HODELS

On a fin? scale, a rock is not ● continum, but exhibits ● variety of

microotructuro. Further, the inelaatic reeponne of solide can often be

associated with changes in the microstructure. For ●xample, brittle

materiala contain tiny embedded flaws. At certain levels of strtee, theee

flaws can begin to grow, ● process that we see microscopically ● e fracture,

and ultimately fragmentati~,l. With this Lnaight, one might hope that a

conetitutive model for brittle rocks would ba based on fracture mechantc~.

Howevar, moct currently utilizad constitutive ❑odels of inelaatic behavior

including fracture ● re macroscopic--i.e., ara based on plasticity theory ●nd

ignora the microstructure.

Constitutive models that take account of microstructure ● re called

❑icrophysical models. These model. contain two levole of description of the

solid. On the la:ge scale the models simulate ●n ●quivalent continuum. In

most medals, this continuum ie ●lastic. Howavcr the effactive moduli

characterizing the equivalent continuwn vary with certain internal variablee

that are calculated from the microstructure of the mall ncale description.
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Om the amali scale, the models contiin a etatiatical description of the

micros trueture. Using ❑echanical models (for example, fracture mechanics if

the structural elements ●re cracks)s the microstructure evol~aa in time.

Changes in the microstructure ●re driven by the mecroecopic ●treoa field.

Thus, these two levels of description are coupled interactively. The

internal variables upon which the effective ■oduli depend are calculated

from the cute of the microstructure. The effective moduli are used to

calculate the Mcroacopic streae field from the etrain, which is determined

external to the conatitutive law. Finally, the macroscopic streaa ia used

in the mechanical models to cal(Ilate changus in the microstructure {n the

small zcale picture.

He emphaeiza that the microphyaical ●pproach doea not require ●

detailed Mpping of the ●ctual m:croatructure in ●ny problem. Rather, the

microstructure i. characterized etatietically,●nd so represents a material

property that can be determined in the laboratory. The ❑icrophysical model

should be used for problems where the scalea of intareat are much larger

than the Intrinsic acalee of the ❑icrostructure so that the medium really

●ppears to reepond aa ● continuwn, and ●o that the atitletice ●re “good”.

The microphyaical approach contains several advantages over other

modele baaed on plasticity theory. To begin, tha input parameter of the

mlcrophyaical model ● re physical propartiea that can be directly measured.

Further, becauae the theory ie baaed on physical parameters, it ie capable

of scaling in length and time. “’his la crucial because the etrain-rate

effect Is ●xtramely important in dynamic proceaaes (eef, for example, Grady

●nd Kipp, 1979). Finally, the microphyaical models ● ro comparable to the

plasticity❑odels IF tarma of computational ●fficiency.

Tha particular model described in thie paper is named PBCF! (for

poroue-brittla constitutive ❑odel), ●nd is intended for matariale that

●xhibit both compaction and brittle failure. PBCH has bean ●pplied to rocks

such ● a unsaturated tuffs ●nd ●andetone..

PBCPl conaidera two typee of microetructuro--spherlcal pores and

panny-aheped cracka. In Saction 111, we deacrlba ● ❑echanical model for the

collapw of pores aa ● function of hydrostatic load. In Saction IV, we

review the goneralisecl Griffith theory that determines when ● crack mey

bagin to grow ● s a function of crac~ sine ●nd orientation in ● genaral

atreas field.
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III. POKE COLLAPSE

Compaction is the inelastic (irreverelbla) lose of specific volume

du:ing the paseage of ● compreeaiwe streee weve. Nicroecoplcally, compac-

tion is aeaociated with the plaetic collapee of poree. IrI thie section, ue

deecribe a mechanical ■odel for pore collapae, baeed ●airily on the hollow

sphere model of Carroll ●nd Ilolt(l~7L).

Carroll and Holt consider spherical pores in ●n incompressible

elaa tic-plastic material. They further ● esume that the system may be

represented aa a hollow ephere whoee inner rsdiue ia the pore radiue, nnd

whoee outer radius is chosen to -t:h the material extin~ion ratio a. Here,

a is defined as the ratio of specific volume of the poroue material to

specific volume of :ha matrix material; a ie ● dimenaionleaa nmber greater

than or equal to one.

Carroll and Holt provide an ●nalytic solution relating the

time-dependentapplied preoeure on the outer boundary (with zero pressure on

tha inner boundary) to the resulting tire.-dependent exteneion xatio. T’h

solution has three distinct brarichee in which the strain in the matrix

m~terial may be totall~ elau tic, or partly clae tic ●nd partly plastic, or

totaily plastic. Hovewer, there ie very little change of a in the first two

phaaea.

The analyaia contalna two important parameters which ● re the yield

atreee, Y, cf the ~trix material, and a time ecale that depende alao on the

yield stress ●a WQ1l as denelty, Initial ●xteneion ratio, ●nd initial pore

radi~s. The result of the analyeis Ie ● second-order differential equation

for a as a function of time.

PBCflwaa initially writtan to integrata thie dynamic ●quation for a.

However, in ❑a% cas~a of intereet, the intrinsic time ecale ●eeociated with

pore collapte ie much smaller than dynamic time scalee ●ssociated with the

etre~a wave. In such caeec the inartlal term in the pore collapae equation

mc} ba neglected, leaving the equilibrium relation

(1)

This equation go\*erna tha pore collapse. The “le~e-than-or-equal-to” sign

meana that a io ● nonincreaeing function of time.
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In general, one ●ight consider the ●ffect of ●llowing a ●pectrm of

pore siaee ●s would be found in

-tic case, the pora size does

to consider the ●verage initiel

Iv. FRACTURE

Much work haa been done on

the in situ rock. However, in the quaais-

not appear in

pore radius.

the theory of

Eq. 1P ●nd ●o 1: la efficient

fracture, most of which builds

on the original ideas of Griffith (1920). The measured failure atrengt,lof

brittle materials ie often two orders of magnitude smeller than theoretical

estimates baeed on breaking atomic bonds. Griffith postulated the ●xistence

of tiny flaws in brittle materials. The flaw tips act ae stress con-

centrator, ●mplifying the external atreaaea to the point where the flaws

begin to grow. Furthermore, ● o~tiatical distribution of flaw density ae a

function of size ●nd orien~tion is a ma?erial property that can be deter-

❑ined directly by section and counting (Seaman, 1976).

Each microscopic fiaw ia really a tiny crack. It la crucial then to

underotend the condltione under which ● crack may grow. Griffith-a theory

is baaed on the idaa that the atibility of the crack can be determined from

general thermodynamic conaiderationa. Griffith applied hia analyais to

two-dimensional alita in normal tension. The ●nalyaia has been gee-ralized

to three-dimensionalFanny-thaped cracke in spatially uniform, but otherwise

arbitrary streaa fieids

Fur ● crack in the

(Hergolin, 1984).

x-y plane, the condition fcr growth ia

U;z) >~
2(L-V2)C

if aga la tensile (pomitive) and

(7$1(“:2 + U2 ) >~yc 2(1-V2)C

(2)

(3)

if U’* i. compresalveo Here c ia the crack radiua, v ia Poisaom”a ratio,

E la Young-s ■odulus, ●nd T ia tha coefficient of surface tanaion. These

●quations show that ammller cracks are more ●tabl~, ●nd that tha effect of

shear streaa ia to decreaae the critical crack sise for growtil.

Unliks the ●ltuation with pores, it la ●lvaya important to ●llou a

spectrum of initial crack radii. :hia spectrum, coupled with the
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asymptotic limit on the speed of crack propagation, is the source of both

size ●nd ●train-rateeffects that characterise real geologic mtarlals. The

exact description nf the evolution of a crack distribution with loading is s

difficult problem, and many compromises ●ust be made with the thaory to

render the model compatible. PBC?iuses a two-parameter ●nalytic form to

represent the crack distribution ● s it evolves. htailc can be found in

Demuth, et al. (1984).

v. EFFECTIVE IUIDULI

The presence of cracks and pores alters the elastic response of the

❑aterial. The effective ❑oduli represent the elastic properties of ●n

equivalent continuous ❑edium. Effective elastic moduli ● re substantially

different from the tangent moduli. Tangent moduli ● re calculated from the

slope of a atrese-strain curve during inel-etic deformation, and ao depend

critically on th~.himtory of loading. By contrast, the effective ●lastic

moduli depend only GII the instanbneous smte of the microeLructure.

The effective elastic moduli are found from ●tatic eolutions of the

displacement field for a body with a (stitietically) prescribed microstruc-

ture, and subject to a macroacopically uniform etreaa field. To l-vest

order, the total etrain of thw body is the sun of the elastic strain of the

matiix material plus the extra strain due to opening and shearing of the

cracks and pores. lhe elaatic strain oi the matrix is simply related to

the atrees if the ma:rix is seamed to ba linear elastic. The response of a

single crack or pore to uniform atresa i~ found ftom detailed solutione in

Sceddon (1969) and Hackenzie (1950).

To derive the total effect of the microstructure, one must then sum up

the effects of the individual cracks and pores over the entire

microstructure. Thin summing process leads to several dimensionless numbers

which we term Intarnal variables. These internal variables form the connec-

tion between the microscopic ●nd macroscopic luvela of the conatitutive

❑odel.

One of thaee internal variebleo Is the extension ratio, a. The other

variable, y, repreaenta the third moment of the crack density dietxibution.

For ●xample for ● ●lmple material con~ining only cracks bedded parallel to

the x-y plane, tt.e effective compliance Czzzz is related to the compliance

of the matrix material C~rzz by (Hzrgolin, 1983b).
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c o-c (1++ (1- Vz)y) .Zzzz Zzzz (4)

This equation ehowrn that the cracked material io softer than the untracked

material. For ● ore general crack distributions, y becomes a two-index

tensor.

The essence of the effective moduli is that they enable JO to write

@tress as a function of strain plus the internal variables. The constitu-

tive law is ●xactly integrable in time--i.e., ia an ●quetion of state--and

depends on the h~atory only through the internal variables.

Furthermore, all inelasticity in our ❑odel results from the evolution

of the microstructure. In rate form, the conetitutive law has the form

Inverting for the etrees rate

dakl
- (c-l)-iii-

(5)

(6)

Thus, the conetitutlve relation has the form of a viecoelastic solid, and

t~~ relaxation time is determined by the rate of

variables.

The effective moduli described abova are derived

and cracks are relatively far apart. To be precise,

the affective moduli, we have ●eswned

y<<l 1 (a - 1) << 1

change of the internal

for bcdiea whose pores

in the derivation of

(7)

For larger value. of these interi,alvariables, salf-consistent field ccrrec-

tione ❑ust be ●ppliad to the m.duli (Hoenig, 1979).

Tha ●ffect of the self-consistent corroctiona i. to predict eofter

elastic respon.e for large values of (a - 1) and much more rapid softtning

of rho ❑aterial during crack growth. Tha latter is important in calcula-

tions involvin~ rcpld fracture to corractly describe localisation effects.

A particular ●xample 1s t;i~ epall calculation of the last section.
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v. IMPLEMENTATION

PBCH has been implemented in the computer program SHALE (Demuth, et ●l.

1986). SHALE is a finite difference code that integrates the equationa

representing conservation of maaso ●oment-r and energy in a continua. The

conservation laws ●ust be supplemented by ● constitutive law~ ● ther-

modynamic rela tion between the deformation of the medim and the reetoriag

forces (that is, the streee field). The conservation equationm and the

cons titutive ●qua tion form a complete eet which, with appropriate boundary

and initial conditions, describe the behavior of the continum.

SHALE is based on a time marching procedure. Given the valuee of all

the field variablea ●t any time, SHALE approximately integrates the equa-

tions over a small increment of time to find the field variables at the

later time. The increment of time is called the time step, and Integra tion

of the equations over a time etep is termed a compu~tional cycle.

In the first step of the computational cycle, etrain ratee are calcu-

lated from the spatial gradients of material velocity. Next, PBCN is called

to update the etress tensor. With the time-advanced etr~saes, acceleration

and the new ❑aterial velocity field can be calculated. Finally F with the

new velocities, time-advancedpoaiti.ns, denaitioe, and internal ener~iea

can be computed.

Uithin PBCfl,the internal variablee aaaociated with compaction and

fracture must be updated. A brittle material conuins cracks with ● variety

of .zizea and orientitione. PBCH ● esumea that the competent rock contains a

distribution of cracks aa a function of ●ize. Angular variation are

represented by discrete bine. Initially, the distribution is a material

property. As the material is loaded, the diwtrfbution evolves uelng the

generalized Griffith criteria [Eq. (2) and (3)] to determine which cracke

may grow. The actual distribution becomes quite complicated; however, PBCH

approximates the true distribution with ● simple two-parameter fit. Details

may be found in Demuth, et al. (1984).

Gne must be careful in treating the cracke to recogntze that the effec-

tive ❑oduli are diecontinuoue between normal teneion and compreeeion. This

reflects the physical situation that, in nor-l tanaion, crack@ open Propor-

tionately to tlIa ●tr-ts. However, in normal compreeaion, cracke can do no

❑ore than cloee.
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Under most circumstances, crack growth 10 an unstable process. That

is, streea relaxation aascciated with growth is ❑ ore than offset by the

lower streee levels required to propagate bigger

calculate crack growth explicitly--independentof

The eituation ia mere complicated during

cracka. This means we can

the final stress atite.

pore closure. As a nearly

(8)

●quilibrium process, the final pr~ssure ~nd extension ratio must be rslated

by Eq. (1) during compaction. The firet step in updating a is to calculate

the new preseure elastically, ●llowing no compaction. Then one checks

whether this ●lastic ●stimate ●xceeds the critical pressure given in Eq. (1)

based on the current value of a. If it doeo no: ●xceed the critical value,

no compaction occurs and the elastic calculation applies. Otherwise, one

must simultaneously solve Eq. (1) ●long with the equation

P“ -Kecii

Here, Ke is the ●ffective bulk ❑odulus which depends on a.

Equation (1) represents the allowable pairs (p)a) based on the

Carroll-Holt ❑odel of pore collapse. Equation (7) describes the partition

of strain between matrix material and pores. Regarding the dilatation Cii

ae known, these two ●quations can be solved simultaneously for the updated

pressure p and the extension ratio a.

One more important datail concerns the measure of strain. tloet stress

wave codee identify the strain with the symmetrized velocity gradients

(9)

However, the effective moduli are defined as elaatic moduli of the wterial

at a given state of the microstructure. If the microstructure changes

during a computational cycle, the appropriate strain rate must properly

reflect changes in the reference (unloaded) state of the material. This ie

particularly important during compaction when ❑ oot af tha apparent volume

change i. ●aaociated with compaction, and hence, with permaaent change in

reference state. Instead of Eq. (8), the appropriate strain race for PBCti

i8



(lo)

where a. is the extension ratio of the refermce stite.

SHALE with PBCH has been ●pplied to the problem of calculating ground

motion from a deeply buried nuclear ●xplos ion. The problem starts with

detonation of a nuclear explosive, sending etrong stress wave. through the

ground. The ●im of the calculation is to predict the historiao of velocity

and acceleration at the eurface.

The phenomena that SHALE must represent are complex. Clone to the

detonation point, energy mainly in the form of radiation couples into the

gro~f?dproducing a region of melted and vaporized rock. These proceasea

generate a strong compressive stress wave which propagate away from the

detonation point. Outside the ❑elted region, the wave propegatee fneleeti-

cslly for a while and, after sufficient attenuation, elastically. The

inelasticity is associated with compaction. Inelasticity ●nd spherical

divergence cause the wave to disperse and attenuate.

The compressive wave reflects from thr surface as a tensile wave.

Rapid, localized fracture accompanies the firs~ appearance of teusion,

approximately one-half wavelength of th~ pulse below the ground. The frac-

tures in this region coalesce, and completely separate the span layer from

.mderlying :ock. The span layer is thrown up and then falls only under the

influence of gravity. Finally, it hits the underlying rock and bounces.

The figure chows the surface vertical velocity history of a par-

ticularly simple test problem chosen to isolate these p!lyslcalprocesses. A

quaai-one-dimeuaionalstick of cells was initialized with overburden stress,

and a Geussian stress pulse with ● width of 10 ❑ sec was imposed at the

bottom boundary (300 m) at zero time. Thin pulse shape is a realistic

approxlmaticm to the loading fro% an underground explosion. The pulse

reflects from the eurface, causing an upward acceleration, and the reflected

teneile pu;se causes IBpall at depth. The strong rebound from peak velocity

lasts while cracks grow and nause the formation of a new free surface at the

epall gap. The velocity curve turns into ● straight elope as the epall

layer decreasee velocity during its free fall period under the influence of

gra-?icy,then returns to zero velocity In a series of bounces.

In ●ummary, we have implemented ● fracture and failure ●odel based on

tne correct ■icrophysical baeis for fracture, ●nd reproduced the correct set
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of span, free fall, and slapdmn phenmena without numerical art’ ficee or

●d hoc ❑edifications to our code. Furthermore, the correct scaling and

strain rate depandences are built into our model.



References

Carroll, H. tl.and A. C. Holt 1971. Stitic and dynamic pore-collapse rele-
tions for ductile porous materiels. J. Appl. phys. 43:1626-1636.

Demuth, R. B., L. G. Hargolin, B. D. Nichols, T. F. Adams ●nd B. W. Smith
1984. SHALE: A Computer Program for Solid Dynamics. Los Alamoe
National Laboratory report LA-10236.

Grady, D. E. and H. E. Kipp 1980. Continuuo mod~lling of explosive fracture
in oil shale. Int. J. Pock Hech. ?Iin.Sci. and Georaech.Abst. 17:147-157.

Griffith, A. A. 1920. The phenomena of rupture ~nd flow In solids. Phil.
Trans. Roy. Sot. A, 221:163-195.

Hoenig A. 1979. Elastic moduli of a nonrandomly cracked body. Int. J.
Solid Structures 15:137-154.

Mackenzie, J. K. 1950. The elastic constants of a solid contilnlng epheri-
cal holes. Proc. Phys. Sot. B 63:2-11.

?4argolin, L. G. 1983a. Numerical simulation of fracture. Proceedings of
the 1st International Conference on Conetitutive Laws for Engineering
Haterials, Tucson, AZ.

Ilargolin, L. G. 1983b. Elaatic !loduliof a cracked boy. Int. J. Fracture
22:65-79.

Margolin, L. G. 1984. A generalized Grfffith criterion for crack
propagation. Eng. Frac. tlech.19:539-543.

?largolin,L. G. and T. F. Adams 1983. Numerical eimulstion of fracture.
Proceedings of the 23rd U.S. Symposium on Rock Mechanics, Berkeley, CA.

Seaman, L., D. R. Curran, and D. A. Shockey 1976. Computational ❑odels for
ductile and brittle fracture. J. Appl. Phya. 47:4&14-4826.

Sneddon, I. N. and H. Lowengrub 1969. Crack problems in the classical
theory of elasticity. John Wiley and Sons, New York.



.

600

3.0

0.0

-3.0

-6.0

-8-

1 1 1 1 1 1 I 1 1

J’J

0.0

Figure: Surface

0.2 0.4

TIME
velocity hietory in

0.6 0.8- 1.0

(see)
SHALE/BCPltest calcul~tion.


